Land use strategies to mitigate climate change in carbon dense temperate forests
نویسندگان
چکیده
Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO2, disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon's net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011-2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m3⋅y-1 Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions.
منابع مشابه
Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests.
From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist ...
متن کاملSeparating effects of changes in atmospheric composition, climate and land-use on carbon sequestration of U.S. Mid-Atlantic temperate forests
Terrestrial carbon dynamics have been vastly modified because of changes in atmospheric composition, climate, and land-use. However, few studies provide a complete analysis of the factors and interactions that affect carbon dynamics over a large landscape. This study examines how changes in atmospheric composition (CO2, O3 and N deposition), climate and land-use affected carbon dynamics and seq...
متن کاملForests and climate change: forcings, feedbacks, and the climate benefits of forests.
The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon seques...
متن کاملVariations of Soil Fertility Following the Oak Deforestation in Miankooh Region, Shahrekord
Extended abstract 1- Introduction Land-use change has been extensively considered by farmers as an easily available approach with the aim of finding new resources for producing more agricultural products. Deforestation, the most common type of land-use change, has led to the extensive parts of productive lands in different parts of the world being highly degraded. Rainfed farming can be liste...
متن کاملOleoresin yield and carbon stocks in tapped subtropical Pinus elliottii forests
Background Low-cost methods to mitigate the increasing levels of carbon dioxide in the atmosphere and their implications on global climate change have received considerable attention in the last years [1,2]. Afforestation is an important alternative to reduce the rise in atmospheric CO2 concentration due to the system’s ability to fix carbon in forest biomass and soil [3]. Several studies have ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 115 شماره
صفحات -
تاریخ انتشار 2018